Course Scheduling Service (CSS) 24

Developer Manual for Southwestern
University Course Scheduler Service

Computer Science Capstone 24
Yahya Hamdallah, Mark Mueller, Kate Nguyen, Colby Sullivan
Instructor: Dr. Barbara Anthony

Course Scheduling Service (CSS) 24

Integrated Development Environment (IDE) 3
Installing Visual Studio Code 3
Workflow Control 3
Installing GitHub Desktop 3
Using GitHub Desktop 3
Hosting: Python Anywhere 3
Setting Up Python Anywhere 3
Creating the Virtual Environment 4
Languages and Frameworks: Python, HTML, CSS, JavaScript, Flask 6
Python 6
Installing Python 6

HTML 6
CSS 7
JavaScript 7
Flask 7
Installing Flask 7

Live View 7
GNU Linear Programming Kit (PyGLPK) 8
Comma Separated Values (CSV) 9
Editing CSVs 10
Making CSVs 10
Output Explanation 11
Database 1"
Google Firebase 11
Autofill Example 12
File Directory 13
Navigating Files 13
Frontend Files 13
Backend Files 13
Website Maintenance 14
Website Down 14
Pushing Changes 14
Future/On-Going Work 15

Course Scheduling Service (CSS) 24

Integrated Development Environment (IDE)

The IDE used was Visual Studio Code. This isn’t necessary, but it pairs well with Github.

Installing Visual Studio Code

Go to Visual Studio Code Homepage
Click Downloads

Download Visual Studio Code

Follow the instructions on the installer

PoOb=

Workflow Control

The primary workflow control we used was GitHub Desktop. Our code is hosted on
Github, so GitHub Desktop or other programs, like GitKraken are needed to import the repo.

Installing GitHub Desktop

1. Click “Download for ...”
2. Follow the instructions on the installer

Using GitHub Des|
1. Clone Repository of Course Scheduler
2. Create your own Branch
3. Pull from Main to your branch
4. Open in Visual Studio Code

Hosting: Python Anywhere

Setting Up Python Anywhere

Our project uses the free version of Python Anywhere to host the site.
Go to Python Anywhere Homepage

Create a Beginner Account

Go to the Web tab

Either create your domain or use the predetermined one
Click Next

Select Flask as your Python Web framework

Click Next

Python 3.10 (or up to discretion)

9. Click Next

10. Click Next again on the Quickstart new Flask project

11. Your web application has been deployed.

® NGOk WD~

https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/downloads/
https://desktop.github.com/
https://www.pythonanywhere.com/
https://www.pythonanywhere.com/

Course Scheduling Service (CSS) 24

Initial setup for PythonAnywhere

After creating a web application in Python 3.10, go to the console page and run a bash
console using the following commands.

Creating the Virtual Environment

Unset

mkvirtualenv myvirtualenv --python=/usr/bin/python3.10

To test if it worked, run

Unset

which python

To activate and add modules to environment

Unset

workon myvirtualenv

Installing the necessary modules

Unset
pip install glpk
pip install Flask

When you are done adding to your virtual environment, deactivate it so we can clone our
repository.

Unset

deactivate

Course Scheduling Service (CSS) 24

Cloning the repository and setting up the directories.

Unset
git clone -b main
https://github.com/MuellMark/Course-Scheduler.git

You can also substitute main for any other branches.
Go to the Web section.

Go to the web directory and make it look like this.
The path to Virtualenv, the Working directory, and the Source code should be similar, if
not exactly the same.

Virtualenv:

Use a virtualenv to get different versions of flask, django etc from our default system
ones. More info here. You need to Reload your web app to activate it; NB - will do nothing
if the virtualenv does not exist.

/home/colbySullivan/.virtualenvs/flaskenv

(2 Start a console in this virtualenv

Code:
What your site is running.
Source code: /home/colbySullivan/Course-Scheduler/src ~Go to directory
Working directory: /home/colbySullivan/Course-Scheduler/src A Go to directory
WSGI configuration file: /var/www/

colbysullivan_pythonanywhere_com_wsgi.py
Python version: 310 7

Run these commands if you have issues pulling new code from the repository.

Unset
cd /Course-Scheduler
git pull

Course Scheduling Service (CSS) 24

If there are merge conflicts with the files currently in the web application, run this
command. Be aware that this will remove any changes you make locally in
PythonAnywhere.

Unset

git reset --hard

Languages and Frameworks: Python, HTML, CSS, JavaScript, Flask
Python

Python is an interpreted language that does require installation. This was used
for backend development, both to create the API and for the algorithm.

Installing Python

Windows:

-_—

The easiest way to install Python will be through the Windows App Store
2. Download Python from this link

3. Restart your device after the download is complete, and reopen the
project

1. Download Python from this page
2. Go through the installer steps
3. Verify it is installed by searching for Python in your applications

B.
1. Install homebrew from this page
2. Run the command
brew install python@[version]
3. Verify it is installed by running
python --version
HTML

HyperText Markup Language (HTML) does not need installation. It is a standard
language used to create and design the webpage.

https://www.python.org/downloads/release/python-31011/
https://html.com/
https://www.w3.org/Style/CSS/Overview.en.html
https://www.javascript.com/
https://flask.palletsprojects.com/en/3.0.x/
https://www.microsoft.com/store/productId/9NRWMJP3717K?ocid=pdpshare
https://www.python.org/downloads/
https://brew.sh/

Course Scheduling Service (CSS) 24

SS

Cascading Styling Sheets (CSS) does not need installation. They allow us to
control the structure and appearance of the web page with more flexibility regarding
colors, fonts, and layout.

JavaScript

JavaScript does not need installation. It allows for dynamic features on webpages
and was used for more complex features and our animations.

Flask

Flask is a flexible web framework that requires installation. It is designed for
Python and allows for a simple and quick website setup.

Installing Flask

1. Open a PowerShell terminal in Visual Studio

TERMINAL R [powershell +~ [0 @ -

PS C:\Users\yahya\Documents\Course-Scheduler> []

2. Type in - pip install Flask

OUTPU DEBUG CONSO TERMINAL PORTS) el +v @D @ -

~ X

PS C:\Users\yahya\Documents\Course-Scheduler> pip install Flask]

EBU RMINA o +v 0@ - A X

Requirement already sat i (3.0.2)

Requirement already inja2 i \ ackages (from Flask) (3.1.3)
Requirement already o y -packages (from Flask) (3.0.2)
Requirement already .3 :\users\yahya\ e-packages (from Flask) (8.
Requirement already satisf i

Requirement already satisf

Requirement already sat r in c:\user

ib\s)
Requirement already satisfied: e>=2.0 in rs\yahya\documents\1ib\site-packages (from 1.2->Flask) (2.1.5)

[1 A new release of pip is available:
[1 To update, run:
PS C:\Users\yahya\Documents\Course-Scheduler> []

Live View

This is the easiest way for developers to see changes in real time before deploying to
Python Anywhere.

Course Scheduling Service (CSS) 24

1. Open a bash terminal in Visual Studio

TERMINAL Blbash +~ M @ - ~ X

~/Documents/Course-Scheduler

2. cdsrc

£ TERMINAL BJbash +v @ @ -
~/Documents/Course-Scheduler

~/Documents/Course-Scheduler/src

TERMINAL R Bpython +~ M @ - A

~/Documents/Course-Scheduler/src
$ python app.py
* Serving Flask app ‘app’
* Debug mode: on

* Running on http://127.0.0.1:5000
Press CTRL+C to quit

b4 tart: with stat

* Debugger is active!

* Debugger PIN: 112-475-209

4. Click on HTTP link and it will open in a browser window

TERMINAL

~/Documents/Course-Scheduler/src
$ python app.py
* Serving Flask app 'app’
* Debug m

* Running on

* Restarting with stat
* Debugger is active!
* Debugger PIN: 112-475-209

5. When you want to see the edits you made on the webpage, refresh the page; the
changes will be shown.

GNU Linear Programming Kit (PyGLPK)

The Scheduler operates from a Python script running the Python GNU Linear Programming Kit
(PyGLPK). The script is fed into 1 CSV file containing all the course and faculty constraints. A
linear program is created and modeled based on these constraints as a 2D matrix. This linear
program is then passed into PyGLPK, where it is solved, checked for feasibility, and exported to
a separate CSV file. This CSV file has been passed back to the website for proper display. If
you plan to use this module outside of PythonAnywhere, be aware that it will only work locally
through Mac if you use homebrew. If you decide to do that, there is no homebrew virtual
environment, so you cannot host a locally run server unless you use an Ubuntu Linux server. To
get PyGLPK running on Linux, simply install the apt-get command on your local machine.

Course Scheduling Service (CSS) 24

Comma Separated Values (CSV)

Comma-separated values (CSV) is a text file format that stores tabular data in regular text,
using commas to separate values. Each line in the file represents one data record in the table.
These files are a large component of the Southwestern Course Scheduler application. They
define the course and faculty restrictions in the linear program to generate the course schedule.

<forced_courses> <Swa pped_cou rses>
CS21,m200

i €S21,C522
<course_restrict>
CSll,TRGE,CSZl,EXPl,ORGl,ALGl,mB30,$ <f0 rced cou rses>

€521, TRUE, CS11, EXP1,0RG1,ALG1,m330,$

DIS1,FALSE,ORGL, PRL1,ART1, TOC1,DAT1, OPR1, NUAL, m330, $

ORG1, TRUE, DIS, PRL1,ART1, TOC1, DAT1,0PR1, NUAL, CS11,CS21, EXP1,ALG1,m330, NUA1 ’ m930

PRL1,FALSE,DIS,0RG1,ARI1, TOC1,DAT1,0PR1,NUAL, m330, $.

ALG1, FALSE, SYS1,CAP1,ARI1, TOC1,DAT1, OPR1,NUAL, CS11,CS21, EXP1,0RG1,m330, $ <course_restrict>
SYS1,FALSE,ALGL, CAP1,ART1, TOC1,DAT1, OPR1, NUAL, m330, $

CAP1,TRUE,ALG1,S5YS1,ART1,TOCT,DAT1,0PR1, NUA1, m330, $ Cs21 » TRUE, m800 ’ m330 ’ NUA1 ’ $ ’ CS211
ART1, FALSE,TOC1,DAT1,0PR1, NUA1,DIS1, ORG1, PRL1,ALG1, SYS1,CAP1,m330, %

TOC1, FALSE, ARI1,DAT1,0PR1, NUA1, DIS1, ORG1,PRLL, ALG1,SYS1, CAP1,m330, $ yri » TRUE, m800 ’ m330 , NUA1 ’ $ ’ CS211
DAT1, FALSE,ART1,TOC1,0PR1, NUAL,DIS1, 0RG1,PRL1,ALG1, SYS1,CAP1,m330,$

OPR1, FALSE,ARI1, TOC1,DAT1,NUA1,DIS1,0RGL, PRL1,ALGL,SYS1,CAP1,m330,$ NUA1 ’ TRUE , m8oe ’ CS21 , S22 , $ ’ NUA11
NUA1, FALSE, ARI1, TOC1,DAT1,0PR1,DIS1,0RG1, PRL1,ALGL, SYS1,CAP1,m330,$

EXP1,FALSE,CS11,CS21,0RG1,ALGL, $

<faculty restrict> <faculty_ rest rict>

Prof_1,TRUE,ALG1,CAP1,PRL1,0PR1,EXP1,m200,$

Prof_2,FALSE,CS11,T0OC1,$

e o Faculty 1,TRUE,CS21,NUAL,$
Prof_4,FALSE,NUA1,$

Prof_5,FALSE,CS21,0RG1,DAT1,SYS1,ARI1,$ FaCU1ty 2 ’ FALSE ’ CS22 ! $

These are 2 examples of the CSVs passed through to the Python Script. The first is a more
realistic example of a schedule and its constraints. The second demonstrates the possible tags
and will be used to explain how they function.

e <swapped_courses>: Also known as the swap tag, it indicates when 2 courses are to be
swapped. This functions differently than the other tags, as they only appear after a given
schedule is created. This is because times must be set for two courses to be swapped.
The two courses, CS21 and CS22, are the ones that are to be swapped. Internally, this
works by getting the times each course would be taught and then making 2 forced tags
where their times are swapped.

e <forced_courses> Also known as the force tag, it indicates when a course must be
completed at a certain time. Like the swapped tag, this is optional, as some schedules
will not have any forced times. These tags have the course and then the time they must
be held- in this case, NUA1 must be held at m930. There is code in place to ensure only
one tag is allowed for each class, and when a new one is indicated, it replaces the one
already in the file, if applicable.

e <course_restrict>: Also known as the course tag. This is one of the 2 required tags, as
course restrictions are necessary to create a schedule. Each line follows a format: first,
the course name + section number are listed, followed by a True/False to indicate
whether or not that course is a 4-contact hour course. Any courses listed after that are
courses that cannot be taken at the same time. Any times listed indicate times the

Course Scheduling Service (CSS) 24

course cannot be held. The $ indicates the end of the file for the Python script, and any
text listed after is reserved for the course name.

e <faculty_restrict>: Also known as the faculty tag. This is the other required tag, as faculty
restrictions are also necessary to create a schedule. These follow a similar format to the
course tag rows. First is the faculty’s name, then a boolean indicating whether or not
they need to teach outside of prime time. Any courses listed are the courses the faculty
member is teaching, and any times indicate times they cannot teach.

The CSV file parsing is generally resilient, so extra newlines and the order of the
courses/times don’t matter. However, the name and the boolean value must be first for each
line, and the $ needs to be last or second to last.

Editing CSVs

Swaps and forcing times can be done on the display page. After every change, the
schedule is checked for feasibility. If it is infeasible, the site will indicate this and not change the
schedule. However, there is currently no way of deleting the added forced tags other than
overwriting them at a different time. To delete one, download the file and open it in an editor
(text edit, sheets, and excel, for example). Remove the line with course forced at a time and run
the program again.

Making CSVs

CSVs are difficult to create manually, so we offer a tool for users to create them on the
CSV creation page:

Course Table SaveasCSV Next

Clear Table Add Row New Course v

4
Class name Abbreviation Contact Sections Unavailable Times Select CourselD
Hours

MWF (J8:00 (J9:30 (J11:00 (J2:00 (J3:30
- | [Computer Science 1 | [cs1 [Yesv] [3 —— Cs13 Add Conflicting Course
TTh O8:30 (J10:00 (J11:30 @1:00 (J2:30

Faculty Table

Clear Table Add Row

Prime

(e Classes Unavailable Times

Professor Name
MWF ®8:00 (J9:30 (J11:00 (J2:00 (J3:30

[-] [BarbraAnthony Yes v] [cs13 Add Course Taught
TTh 08:30 J10:00 J11:30 J1:00 (J2:30

10

Output:

<course-table>
CS1,TRUE,3,t100,CS13,$,Computer Science 1

<faculty-table>
Barbra Anthony, TRUE,CS13,m800,%

Output Explanation

Course Scheduling Service (CSS) 24

<course-table>

Abbreviation 4 Contact Hour | Sections Unavailable Course ID End of | Class Name
Times Flle
CSt, True, 3, t100 CS13, 3, Computer Science 1

<faculty-table>

Professor Prime Time Courses Unavailable

Taught Time
Barbra TRUE, CS13, m800
Anthony,

These generated schedules work a bit differently. In the third slot of the course tag rows,
there is a number indicating the number of sections of a given course. The script expands this
number to look like the schedule examples above. These only occur when generated directly
from the created CSV page; when downloaded again, they are converted to another form.

Database

Google Firebase

Our application integrates a Google Firebase database to store essential course
data, which is particularly utilized in the "Create CSV" page. Information like the course
name, abbreviation, number of sections, and course ID are recorded when users enter

courses into the database. By using an autofill feature in the course table, this

configuration not only saves the data for future accessibility but also improves user
productivity. In particular, the process is streamlined by automatically filling in static
information, such as contact hours and abbreviations for courses taught frequently. As a

result, faculty members can streamline their workflow by only having to update

semester-specific dynamic information, like unavailable times and conflicting courses.

11

Course Scheduling Service (CSS) 24

"cs1”

‘Computer Science 2"

“TRUE"

"Cs1”
‘Computer Science 1"

“FALSE"

"cs”
‘Computer Science 1"
urs: "FALSE"

Database Entry Example

Autofill Example

Course Table SaveasCSV Next

Clear Table Add to Firebase Add Row

New Course
CS1

cs12
Class name Abbreviation Co cs2 ctions Unavailable Times Select CourselD
H¢ cs21

cs22

MWF (J8:00 (19:30 (J11:00 (J2:00 (J3:30
[Nomber of Sectons Add Conflicting Course
TTh 08:30 010:00 J11:30 (J1:00 (J2:30

[] [EnterNew Cou

] [Enter Course Abbreviation”]

Course Table SaveasCSV Next
Clear Table Add to Firebase Add Row
4
Class name Abbreviation Contact Sections Unavailable Times Select CourselD
Hours

MWF (J8:00 (9:30 011:00 0J2:00 ()3:30

[[Compwisrsancs 7| [c81 ‘

Add Conflicting Course

TTh 08:30 0J10:00 O11:30 01:00 (J2:30

12

File Directory

Course Scheduling Service (CSS) 24

~ COURSE-SCHEDULER
> github
> venv2
> Legacy-Code
™ src

__pycache__

>

> venv

> CSV Files

> CSV-Files

> not_in_use_templates
>

>

>

v

pyscript-main

Python_Code

static

templates
about-howto.php
copyofdisplay.php
csv_option.php
display.php
dynamic_merge_php
fag.php

import_csv.php
landing_page.php

app-py
File_Convertor.py
howtorun.txt

input.csv

newfile.txt

PyGLPK_Solver.py
B swap.csv
test.py
-gitignore
B output.csv
README.md
schedulerTest.sq|

B user_output.csv

final_schedule_result php

originalPyGLPKGenerate.py

Navigating Files

Flask requires that specific files be in special
file paths. For CSS files they, must be in
src/static/CSS. For HTML and php files, they
must be in src/templates.

Frontend Files
These files will be under src -> templates

about-howto.php
copyofdisplay.php
csv-options.php
display.php
dynamic_merge.php
faq.php
final_scheldule_result.php
import_csv.php
landing_page.php

Backend Files

These files will be under src

app.-py

File_Convertor.py
originalPyGLPKGenerate.py
PyGLPK_solver.py

test.py

13

Course Scheduling Service (CSS) 24

Website Maintenance
Website Down

If the website is ever down or errors display the schedule, the script can still be
called directly from a Python prompt. The file to call is src/File_Convertor.py (the whole
path may be required, but it is different for each machine). There are 3-4 command line
params that are needed:

1. The full path to the CSV file you're calling. This would be the file you’d upload to
the upload page.

2. The type of operation you're doing on the file. Most times, this will be “csv,” but
“time” and “swap” are also possible options. These indicate whether a time will be
forced or two courses are to be swapped.

3. The next command line param is the export type. Simply putting “both” is
recommended, as it creates both the output for the site and for downloading
simultaneously, going to output.csv and user_output.csv, respectively.

4. The final command line param is ONLY for swaps. You'll need to provide the file
of a previous solution. This should be the full path of output.csv.

Altogether, the commands should look like these examples:

Generating a schedule from test_swap.csv:
<path>/src/File_Convertor.py <path>/src/CSV_Files/test_swap.csv csv both

Swapping two courses in test_swap.csv
<path>src/File_Convertor.py <path>/src/CSV_Files/test_swap.csv swap both <path>/output.csv

Pushin han

To push changes, go to PythonAnywhere, open up a bash terminal, and type in these
commands.

Unset
cd /Course-Scheduler
git pull

If the commands are successful, you will see the changes pulled in, and then you can
proceed to the next step. If there is an error, you simply need to reset the head of your
repository clone by using the command below.

14

Course Scheduling Service (CSS) 24

Unset

git reset --hard

Once you have successfully reloaded, go back to the web section of PythonAnywhere
and click the green reload button at the top of the page.

Future/On-Going Work

Many additions could be made in the future, such as:

e Fix the schedule layout; it’s all one column, and splitting it would be useful

e Reporting on what was infeasible when swapping courses or forcing times. It only
indicates if it is infeasible, not what broke the schedule.
Replacing the effects of a forced course without manually editing the CSV file.
The database currently contains only Math and Computer Science courses.
Expanding to more departments at Southwestern University or even other
universities would be great. This would likely require redoing the time columns
and adding them to the database.

15

